Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 11(13): e2305818, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38240578

ABSTRACT

Current metagenome assembled human gut phage catalogs contained mostly fragmented genomes. Here, comprehensive gut virome detection procedure is developed involving virus-like particle (VLP) enrichment from ≈500 g feces and combined sequencing of short- and long-read. Applied to 135 samples, a Chinese Gut Virome Catalog (CHGV) is assembled consisting of 21,499 non-redundant viral operational taxonomic units (vOTUs) that are significantly longer than those obtained by short-read sequencing and contained ≈35% (7675) complete genomes, which is ≈nine times more than those in the Gut Virome Database (GVD, ≈4%, 1,443). Interestingly, the majority (≈60%, 13,356) of the CHGV vOTUs are obtained by either long-read or hybrid assemblies, with little overlap with those assembled from only the short-read data. With this dataset, vast diversity of the gut virome is elucidated, including the identification of 32% (6,962) novel vOTUs compare to public gut virome databases, dozens of phages that are more prevalent than the crAssphages and/or Gubaphages, and several viral clades that are more diverse than the two. Finally, the functional capacities are also characterized of the CHGV encoded proteins and constructed a viral-host interaction network to facilitate future research and applications.


Subject(s)
Bacteriophages , Humans , Bacteriophages/genetics , Sequence Analysis , Genome, Viral/genetics , Metagenome/genetics , Feces
2.
Microbiome ; 11(1): 219, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37779211

ABSTRACT

BACKGROUND: Goat is an important livestock worldwide, which plays an indispensable role in human life by providing meat, milk, fiber, and pelts. Despite recent significant advances in microbiome studies, a comprehensive survey on the goat microbiomes covering gastrointestinal tract (GIT) sites, developmental stages, feeding styles, and geographical factors is still unavailable. Here, we surveyed its multi-kingdom microbial communities using 497 samples from ten sites along the goat GIT. RESULTS: We reconstructed a goat multi-kingdom microbiome catalog (GMMC) including 4004 bacterial, 71 archaeal, and 7204 viral genomes and annotated over 4,817,256 non-redundant protein-coding genes. We revealed patterns of feeding-driven microbial community dynamics along the goat GIT sites which were likely associated with gastrointestinal food digestion and absorption capabilities and disease risks, and identified an abundance of large intestine-enriched genera involved in plant fiber digestion. We quantified the effects of various factors affecting the distribution and abundance of methane-producing microbes including the GIT site, age, feeding style, and geography, and identified 68 virulent viruses targeting the methane producers via a comprehensive virus-bacterium/archaea interaction network. CONCLUSIONS: Together, our GMMC catalog provides functional insights of the goat GIT microbiota through microbiome-host interactions and paves the way to microbial interventions for better goat and eco-environmental qualities. Video Abstract.


Subject(s)
Goats , Microbiota , Animals , Archaea/genetics , Bacteria/genetics , Gastrointestinal Tract/microbiology , Methane
3.
Gut Microbes ; 15(1): 2205386, 2023.
Article in English | MEDLINE | ID: mdl-37140125

ABSTRACT

Cross-cohort validation is essential for gut-microbiome-based disease stratification but was only performed for limited diseases. Here, we systematically evaluated the cross-cohort performance of gut microbiome-based machine-learning classifiers for 20 diseases. Using single-cohort classifiers, we obtained high predictive accuracies in intra-cohort validation (~0.77 AUC), but low accuracies in cross-cohort validation, except the intestinal diseases (~0.73 AUC). We then built combined-cohort classifiers trained on samples combined from multiple cohorts to improve the validation of non-intestinal diseases, and estimated the required sample size to achieve validation accuracies of >0.7. In addition, we observed higher validation performance for classifiers using metagenomic data than 16S amplicon data in intestinal diseases. We further quantified the cross-cohort marker consistency using a Marker Similarity Index and observed similar trends. Together, our results supported the gut microbiome as an independent diagnostic tool for intestinal diseases and revealed strategies to improve cross-cohort performance based on identified determinants of consistent cross-cohort gut microbiome alterations.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Machine Learning , Research Design , Metagenome , Metagenomics/methods
4.
Food Funct ; 13(24): 12766-12776, 2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36416490

ABSTRACT

Depression is the most common mental disorder in the world. Recently, an increasing number of studies have reported alcohol-related depression. However, there is no simple, efficient, and time-saving alcohol-related depression animal model yet. Based on the fact that people with alcohol addiction often have impaired gastrointestinal (GI) tract health like dysbiosis, which serves as a primary factor to augment lipopolysaccharides (LPS), we first developed a murine alcohol-LPS model (mALPS), with oral gavage of LPS in acute alcohol treated mice, and successfully observed depression-like symptoms. We found that acute alcohol treatment damaged the intestinal barrier and caused dysbiosis, which further increased the translocation of LPS and neuroinflammatory responses (TNF-α and IL-1ß) and led to abnormal expression of the depression-related genes, i.e. BDND and IDO, reduced the levels of 5-HT and caused depressive behaviors in mice. Probiotic intervention could improve depressive symptoms without notable adverse effects. Akkermansia muciniphila (AKK), one of the next-generation probiotics, has been widely used for the restoration of the intestinal barrier and reduction of inflammation. Here, we found that AKK significantly ameliorated alcohol-related depressive behaviors in a mALPS model, through enhancing the intestinal barrier and maintaining the homeostasis of the gut microbiota. Furthermore, AKK reduced serum LPS, ameliorated neuroinflammation (TNF-α and IL-1ß), normalized the expression of depression-related genes and increased the 5-HT levels in the hippocampus. Our study suggests that AKK supplements will be a promising therapeutic regime for alcohol-associated depression in the future.


Subject(s)
Akkermansia , Complementary Therapies , Depressive Disorder , Ethanol , Probiotics , Tumor Necrosis Factor-alpha , Animals , Mice , Depressive Disorder/chemically induced , Depressive Disorder/therapy , Dysbiosis/drug therapy , Inflammation/drug therapy , Inflammation/metabolism , Lipopolysaccharides , Serotonin , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Probiotics/therapeutic use , Complementary Therapies/methods , Ethanol/adverse effects
5.
Nat Commun ; 13(1): 823, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35145088

ABSTRACT

Buffalo is an important livestock species. Here, we present a comprehensive metagenomic survey of the microbial communities along the buffalo digestive tract. We analysed 695 samples covering eight different sites in three compartments (four-chambered stomach, intestine, and rectum). We mapped ~85% of the raw sequence reads to 4,960 strain-level metagenome-assembled genomes (MAGs) and 3,255 species-level MAGs, 90% of which appear to correspond to new species. In addition, we annotated over 5.8 million nonredundant proteins from the MAGs. In comparison with the rumen microbiome of cattle, the buffalo microbiota seems to present greater potential for fibre degradation and less potential for methane production. Our catalogue of microbial genomes and the encoded proteins provides insights into microbial functions and interactions at distinct sites along the buffalo digestive tract.


Subject(s)
Gastrointestinal Microbiome/genetics , Gastrointestinal Microbiome/physiology , Gastrointestinal Tract/microbiology , Metagenome , Animals , Bacteria/genetics , Cattle , DNA, Bacterial , Dietary Fiber/metabolism , Feces/microbiology , Female , Genome, Microbial , High-Throughput Nucleotide Sequencing , Male , Metagenomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Rumen/microbiology
6.
Genomics Proteomics Bioinformatics ; 20(2): 382-393, 2022 04.
Article in English | MEDLINE | ID: mdl-34118462

ABSTRACT

Fecal microbiota transplantation (FMT) of human fecal samples into germ-free (GF) mice is useful for establishing causal relationships between the gut microbiota and human phenotypes. However, due to the intrinsic differences between human and mouse intestines and the different diets of the two organisms, it may not be possible to replicate human phenotypes in mice through FMT; similarly, treatments that are effective in mouse models may not be effective in humans. In this study, we aimed to identify human gut microbes that undergo significant and consistent changes (i.e., in relative abundances) after transplantation into GF mice in multiple experimental settings. We collected 16S rDNA-seq data from four published studies and analyzed the gut microbiota profiles from 1713 human-mouse pairs. Strikingly, on average, we found that only 47% of the human gut microbes could be re-established in mice at the species level, among which more than 1/3 underwent significant changes (referred to as "variable taxa"). Most of the human gut microbes that underwent significant changes were consistent across multiple human-mouse pairs and experimental settings. Consequently, about 1/3 of human samples changed their enterotypes, i.e., significant changes in their leading species after FMT. Mice fed with a controlled diet showed a lower enterotype change rate (23.5%) than those fed with a noncontrolled diet (49.0%), suggesting a possible solution for rescue. Most of the variable taxa have been reported to be implicated in human diseases, with some recognized as the causative species. Our results highlight the challenges of using a mouse model to replicate human gut microbiota-associated phenotypes, provide useful information for researchers using mice in gut microbiota studies, and call for additional validations after FMT. An online database named FMT-DB is publicly available at http://fmt2mice.humangut.info/#/.


Subject(s)
Fecal Microbiota Transplantation , Gastrointestinal Microbiome , Humans , Animals , Feces , Disease Models, Animal
7.
Microbiol Spectr ; 9(3): e0080221, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34787462

ABSTRACT

Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide. Although dysbiosis of the lung and gut microbiota have been associated with NSCLC, their relative contributions are unclear; in addition, their roles in distant metastasis (DM) are still illusive. We recruited in total 121 participants, including 87 newly diagnosed treatment-naive NSCLC patients of various stages and 34 healthy volunteers, and surveyed their fecal and sputum microbiota. We compared the microbial profiles between groups, identified microbial biomarkers, and generated machine learning models for distinguishing healthy individuals from patients with NSCLC and patients of various stages. We found significant perturbations of gut and sputum microbiota in patients with NSCLC and DM. A machine learning model combining both microbiota (combined model) performed better than an individual data set in patient stratification, with the highest area under the curve (AUC) value of 0.896. Sputum and gut microbiota both contributed to the combined model; in most cases, sputum-only models performed similar to the combined models. Several microbial biomarkers were shared by both microbiotas, indicating their similar roles at distinct body sites. Microbial biomarkers of distinct disease stages were mostly shared, suggesting biomarkers for DM could be acquired early. Furthermore, Pseudomonas aeruginosa, a species previously associated with wound infections, was significantly more abundant in brain metastasis, indicating that distinct types of DMs could have different microbes. Our results indicate that alterations of the sputum microbiota have stronger relationships with NSCLC and DM than the gut and strongly support the feasibility of metagenome-based noninvasive disease diagnosis and risk evaluation. (This study has been registered at ClinicalTrials.gov under registration no. NCT03454685). IMPORTANCE Our survey on gut and sputum microbiota revealed that both were significantly disturbed in non-small cell lung cancer (NSCLC) and associated with distant metastasis (DM) while only the sputum microbiota was associated with non-DM NSCLC. The lung microbiota could therefore have a stronger association with (and thus may contribute more to) disease development than the gut microbiota. Mathematic models using both microbiotas performed better in patient stratification than using individual microbiota. Sputum models, however, performed similar to the combined models, suggesting a convenient, noninvasive diagnostic for NSCLC. Microbial biomarkers of distinct disease stages were mostly shared, suggesting that the same set of microbes were underlying disease progression, and the signals for distant metastasis could be acquired at early stages of the disease. Our results strongly support the feasibility of noninvasive diagnosis of NSCLC, including distant metastasis, are of clinical importance, and should warrant further research on the underlying molecular mechanisms.


Subject(s)
Bacteria/classification , Carcinoma, Non-Small-Cell Lung/pathology , Dysbiosis/microbiology , Gastrointestinal Microbiome/physiology , Lung Neoplasms/pathology , Lung/microbiology , Actinobacteria/isolation & purification , Bacteria/isolation & purification , Bacteroidetes/isolation & purification , Biomarkers , Feces/microbiology , Female , Firmicutes/isolation & purification , Fusobacteria/isolation & purification , Humans , Male , Middle Aged , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology , Proteobacteria/isolation & purification , Sputum/microbiology
8.
Genomics Proteomics Bioinformatics ; 19(6): 949-957, 2021 12.
Article in English | MEDLINE | ID: mdl-33741525

ABSTRACT

Coding regions have complex interactions among multiple selective forces, which are manifested as biases in nucleotide composition. Previous studies have revealed a decreasing GC gradient from the 5'-end to 3'-end of coding regions in various organisms. We confirmed that this gradient is universal in eukaryotic genes, but the decrease only starts from the ∼ 25th codon. This trend is mostly found in nonsynonymous (ns) sites at which the GC gradient is universal across the eukaryotic genome. Increased GC contents at ns sites result in cheaper amino acids, indicating a universal selection for energy efficiency toward the N-termini of encoded proteins. Within a genome, the decreasing GC gradient is intensified from lowly to highly expressed genes (more and more protein products), further supporting this hypothesis. This reveals a conserved selective constraint for cheaper amino acids at the translation start that drives the increased GC contents at ns sites. Elevated GC contents can facilitate transcription but result in a more stable local secondary structure around the start codon and subsequently impede translation initiation. Conversely, the GC gradients at four-fold and two-fold synonymous sites vary across species. They could decrease or increase, suggesting different constraints acting at the GC contents of different codon sites in different species. This study reveals that the overall GC contents at the translation start are consequences of complex interactions among several major biological processes that shape the nucleotide sequences, especially efficient energy usage.


Subject(s)
Amino Acids , Nucleotides , Amino Acids/genetics , Base Composition , Codon/genetics , Eukaryota/genetics , Nucleotides/genetics
9.
Fungal Biol Biotechnol ; 8(1): 1, 2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33602329

ABSTRACT

BACKGROUND: Sclerotium rolfsii is a potent producer of many secondary metabolites, one of which like scleroglucan is an exopolysaccharide (EPS) appreciated as a multipurpose compound applicable in many industrial fields. RESULTS: Aspartate transaminase (AAT1) catalyzes the interconversion of aspartate and α-ketoglutarate to glutamate and oxaloacetate. We selected AAT1 in the oxalate metabolic pathway as a target of CRISPR/Cas9. Disruption of AAT1 leads to the accumulation of oxalate, rather than its conversion to α-ketoglutarate (AKG). Therefore, AAT1-mutant serves to lower the pH (pH 3-4) so as to increase the production of the pH-sensitive metabolite scleroglucan to 21.03 g L-1 with a productivity of up to 0.25 g L-1·h-1. CONCLUSIONS: We established a platform for gene editing that could rapidly generate and select mutants to provide a new beneficial strain of S. rolfsii as a scleroglucan hyper-producer, which is expected to reduce the cost of controlling the optimum pH condition in the fermentation industry.

10.
Nucleic Acids Res ; 48(D1): D545-D553, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31504765

ABSTRACT

GMrepo (data repository for Gut Microbiota) is a database of curated and consistently annotated human gut metagenomes. Its main purpose is to facilitate the reusability and accessibility of the rapidly growing human metagenomic data. This is achieved by consistently annotating the microbial contents of collected samples using state-of-art toolsets and by manual curation of the meta-data of the corresponding human hosts. GMrepo organizes the collected samples according to their associated phenotypes and includes all possible related meta-data such as age, sex, country, body-mass-index (BMI) and recent antibiotics usage. To make relevant information easier to access, GMrepo is equipped with a graphical query builder, enabling users to make customized, complex and biologically relevant queries. For example, to find (1) samples from healthy individuals of 18 to 25 years old with BMIs between 18.5 and 24.9, or (2) projects that are related to colorectal neoplasms, with each containing >100 samples and both patients and healthy controls. Precomputed species/genus relative abundances, prevalence within and across phenotypes, and pairwise co-occurrence information are all available at the website and accessible through programmable interfaces. So far, GMrepo contains 58 903 human gut samples/runs (including 17 618 metagenomes and 41 285 amplicons) from 253 projects concerning 92 phenotypes. GMrepo is freely available at: https://gmrepo.humangut.info.


Subject(s)
Databases, Genetic , Gastrointestinal Microbiome , Metagenome , Metagenomics/methods , Software , Genes, Bacterial , Genome, Human , Humans , Molecular Sequence Annotation
11.
Front Microbiol ; 10: 2254, 2019.
Article in English | MEDLINE | ID: mdl-31681190

ABSTRACT

Viruses and plasmids can introduce novel DNA into bacterial cells, thereby creating an opportunity for genome expansion; conversely, CRISPR, the prokaryotic adaptive immune system, which targets and eliminates foreign DNAs, may impair genome expansions. Recent studies presented conflicting results over the impact of CRISPR on genome expansion. In this study, we constructed a comprehensive dataset of prokaryotic genomes and identified their associations with viruses and plasmids. We found that genomes associated with viruses and/or plasmids were significantly larger than those without, indicating that both viruses and plasmids contribute to genome expansion. Genomes were increasingly larger with increasing numbers of associated viruses or plasmids. Conversely, genomes with CRISPR systems were significantly smaller than those without, indicating that CRISPR has a negative impact on genome size. These results confirmed that on evolutionary timescales, viruses and plasmids facilitate genome expansion, while CRISPR impairs such a process in prokaryotes. Furthermore, our results also revealed that CRISPR systems show a preference for targeting viruses over plasmids.

12.
Front Microbiol ; 10: 1205, 2019.
Article in English | MEDLINE | ID: mdl-31214144

ABSTRACT

In recent decades, increasing evidence has strongly suggested that gut microbiota play an important role in many intestinal diseases including inflammatory bowel disease (IBD) and colorectal cancer (CRC). The composition of gut microbiota is thought to be largely shaped by interspecies competition for available resources and also by cooperative interactions. However, to what extent the changes could be attributed to external factors such as diet of choice and internal factors including mutual relationships among gut microbiota, respectively, are yet to be elucidated. Due to the advances of high-throughput sequencing technologies, flood of (meta)-genome sequence information and high-throughput biological data are available for gut microbiota and their association with intestinal diseases, making it easier to gain understanding of microbial physiology at the systems level. In addition, the newly developed genome-scale metabolic models that cover significant proportion of known gut microbes enable researchers to analyze and simulate the system-level metabolic response in response to different stimuli in the gut, providing deeper biological insights. Using metabolic interaction network based on pair-wise metabolic dependencies, we found the same interaction pattern in two IBD datasets and one CRC datasets. We report here for the first time that the growth of significantly enriched bacteria in IBD and CRC patients could be boosted by other bacteria including other significantly increased ones. Conversely, the growth of probiotics could be strongly inhibited from other species, including other probiotics. Therefore, it is very important to take the mutual interaction of probiotics into consideration when developing probiotics or "microbial based therapies." Together, our metabolic interaction network analysis can predict majority of the changes in terms of the changed directions in the gut microbiota during enteropathogenesis. Our results thus revealed unappreciated interaction patterns between species could underlie alterations in gut microbiota during enteropathogenesis, and between probiotics and other microbes. Our methods provided a new framework for studying interactions in gut microbiome and their roles in health and disease.

13.
Nucleic Acids Res ; 46(D1): D700-D707, 2018 01 04.
Article in English | MEDLINE | ID: mdl-29177508

ABSTRACT

Phages invade microbes, accomplish host lysis and are of vital importance in shaping the community structure of environmental microbiota. More importantly, most phages have very specific hosts; they are thus ideal tools to manipulate environmental microbiota at species-resolution. The main purpose of MVP (Microbe Versus Phage) is to provide a comprehensive catalog of phage-microbe interactions and assist users to select phage(s) that can target (and potentially to manipulate) specific microbes of interest. We first collected 50 782 viral sequences from various sources and clustered them into 33 097 unique viral clusters based on sequence similarity. We then identified 26 572 interactions between 18 608 viral clusters and 9245 prokaryotes (i.e. bacteria and archaea); we established these interactions based on 30 321 evidence entries that we collected from published datasets, public databases and re-analysis of genomic and metagenomic sequences. Based on these interactions, we calculated the host range for each of the phage clusters and accordingly grouped them into subgroups such as 'species-', 'genus-' and 'family-' specific phage clusters. MVP is equipped with a modern, responsive and intuitive interface, and is freely available at: http://mvp.medgenius.info.


Subject(s)
Archaea/virology , Bacteria/virology , Bacteriophages/physiology , Databases, Factual , Archaea/genetics , Bacteria/genetics , Bacteriophages/classification , Bacteriophages/genetics , Base Sequence , DNA, Bacterial/genetics , DNA, Viral/genetics , Databases, Genetic , Datasets as Topic , Gastrointestinal Microbiome , Genome, Viral , Host Specificity , Humans , Metagenomics , Prophages/genetics , Sequence Homology, Nucleic Acid , Species Specificity , Virus Integration
SELECTION OF CITATIONS
SEARCH DETAIL
...